skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Soininen, Janne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract AimTo quantify the relative contributions of local community assembly processes versus γ‐diversity to β‐diversity, and to assess how spatial scale and anthropogenic disturbance (i.e. nutrient enrichment) interact to dictate which driver dominates. LocationFrance and the United States. Time period1993–2011. Major taxa studiedFreshwater stream diatoms. Methodsβ‐diversity along a nutrient enrichment gradient was examined across multiple spatial scales. β‐diversity was estimated using multi‐site Sørensen dissimilarity. We assessed the relative importance of specialists versus generalists using Friedley coefficient, and the contribution of local community assembly versus γ‐diversity to β‐diversity across spatial scales, with a null model. Finally, we estimated the response of β‐diversity to environmental and spatial factors by testing the correlations between community, environmental and geographical distance matrices with partial Mantel tests. Resultsβ‐diversity generally increased with spatial scale but the rate of increase depended on nutrient enrichment level. β‐diversity decreased significantly with increasing nutrient enrichment level due to the loss of specialist species. Local assembly was an important driver of β‐diversity especially under low nutrient enrichment. Significant partial Mantel correlations were observed between diatom β‐diversity and pure environmental distances under these conditions, highlighting the role of species sorting in local assembly processes. Conversely, in heavily enriched sites, only spatial distances were significantly correlated with β‐diversity, which indicated a substantial role of dispersal processes. Main conclusionsNutrient concentration mediated the expected increase in β‐diversity with spatial scales. Across spatial scales, β‐diversity was more influenced by local assembly processes rather than by γ‐diversity. Nutrient enrichment was associated with an overall decline in diatom β‐diversity and a shift in assembly processes from species sorting to dispersal, notably due to the elimination of some specialists and their subsequent replacement by generalists. 
    more » « less
  2. Abstract AimThe interaction of land use with local versus regional processes driving biological homogenization (β‐diversity loss) is poorly understood. We explored: (a) stream β‐diversity responses to land cover (forest versus agriculture) in terms of physicochemistry and physicochemical heterogeneity; (b) whether these responses were constrained by the regional species pool, i.e. γ‐diversity, or local assembly processes through local (α) diversity; (c) whether local assembly operated through the regional species abundance distribution (SAD) or intraspecific spatial aggregation; and (d) the dependence on body size, dispersal capacity and trophic level (producer versus consumer). LocationUSA, Canada and France. Time period1993–2012. Major taxa studiedStream diatoms, insects and fish. MethodsWe analysed six datasets totalling 1,225 stream samples. We compared diversity responses to eutrophication and physicochemical heterogeneity in forested versus agricultural streams with regression methods. Null models quantified the contribution of local assembly to β‐diversity (β‐deviance, βDEV) for both types of land covers and partitioned it into fractions explained by the regional SAD (βSAD) versus aggregation (βAGG). ResultsEutrophication explained homogenization and more uneven regional SADs across groups, but local and regional biodiversity responses differed across taxa. The βDEVwas insensitive to land use. The βSADlargely exceeded βAGGand was higher in agriculture. Main conclusionsEutrophication but not physicochemical heterogeneity of agricultural streams underlay β‐diversity loss in diatoms, insects and fish. Agriculture did not constrain the magnitude of local versus regional effects on β‐diversity but controlled the local assembly mechanisms. Although the SAD fraction dominated in both land covers, it increased further in agriculture at the expense of aggregation. Notably, the regional SADs were more uneven in agriculture, exhibiting excess common species or stronger dominance. Diatoms and insects diverged from fish in terms of biodiversity, SAD shape and βDEVpatterns, suggesting an overriding role of body size and/or dispersal capacity compared with trophic position. 
    more » « less